Cyclosporin A markedly enhances superantigen-induced peripheral T cell deletion and inhibits anergy induction
نویسندگان
چکیده
Cyclosporin A (CsA) is a well-known immunosuppressive agent that modulates immune tolerance in many ways. CsA can give rise to a state of long-term nonimmunosuppressed transplantation tolerance, but it can also aggravate autoimmune diseases, and provoke specific forms of autoimmunity. These effects, which are often paradoxical, remain largely unexplained. In this study, we investigated the effects of CsA on superantigen (superAg)-reactive peripheral T cells. The intravenous injection of either staphylococcal enterotoxin B (SEB), or Mls-1a cells into Mls-1b recipients, causes long-term in vitro nonresponsiveness (anergy) and partial elimination of the peripheral T cell receptor (TCR) V beta 8+/CD4+ and -V beta 6+/CD4+ T cell subsets, respectively. We report that CsA markedly enhances the peripheral elimination of SEB- and Mls-1a-reactive T cells such that up to 90% of the targeted CD4+/V beta subpopulations are deleted. The degree of deletion depends on the dose and the schedule of CsA administration, and the number of superAg injections. In situations where the extent of deletion is only moderate, we find that the remaining superAg-reactive T cells fail to develop anergy, unlike the T cells of control superAg-immunized mice. Higher doses of CsA are required to enhance T cell deletion (greater than or equal to 25 mg/kg/d, i.p.) than to impair anergy induction (greater than or equal to 6.25 mg/kg/d, i.p.). In view of these results, it appears that the degree of tolerance in CsA/superAg-treated mice depends on the balance between these opposing effects, i.e., enhancement of peripheral elimination versus the abrogation of anergy. The possibility of enhancing or preventing immune tolerance with a drug may have important clinical implications.
منابع مشابه
Transcriptional regulator early growth response gene 2 (Egr2) is required for T cell anergy in vitro and in vivo
T cell receptor engagement in the absence of costimulation results in a hyporesponsive state termed anergy. Understanding the transcriptional regulation of other T cell differentiation states has provided critical information regarding the biology of T cell regulation in vivo. However, the transcriptional regulation of T cell anergy has been poorly understood. Using the key anergy target gene d...
متن کاملIn vivo induction of anergy in peripheral V beta 8+ T cells by staphylococcal enterotoxin B
We have developed a model of peripheral in vivo T cell tolerance that is induced by administration of the protein superantigen staphylococcal enterotoxin B (SEB). Rather than activating V beta 8+ T cells, in vivo administration of SEB induced in them a profound state of anergy. This was shown by their failure to proliferate to subsequent in vitro restimulation with SEB or to anti-V beta 8 antib...
متن کاملLiver-expressed Igκ superantigen induces tolerance of polyclonal B cells by clonal deletion not κ to λ receptor editing
Little is know about the nature of peripheral B cell tolerance or how it may vary in distinct lineages. Although autoantibody transgenic studies indicate that anergy and apoptosis are involved, some studies claim that receptor editing occurs. To model peripheral B cell tolerance in a normal, polyclonal immune system, we generated transgenic mice expressing an Igκ-light chain-reactive superantig...
متن کاملNitric oxide regulates clonal expansion and activation-induced cell death triggered by staphylococcal enterotoxin B.
Increased interest has recently been focused on nitric oxide (NO) due to its several biological roles. Apart from being a potential antimicrobial defense and a mediator of autoimmune diseases, NO also appears to be a strong mediator of T-cell responses. In this report, we have characterized the effect of NO on T-cell function. For this purpose, we analyzed in vivo T-cell responses to the bacter...
متن کاملCutting edge: the related molecules CD28 and inducible costimulator deliver both unique and complementary signals required for optimal T cell activation.
Optimal T cell activation requires engagement of CD28 with its counterligands B7-1 and B7-2. Inducible costimulator (ICOS) is the third member of the CD28/CTLA4 family that binds a B7-like protein, B7RP-1. Administration of ICOS-Ig attenuates T cell expansion following superantigen (SAg) administration, but fails to regulate either peripheral deletion or anergy induction. ICOS-Ig, but not CTLA4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 176 شماره
صفحات -
تاریخ انتشار 1992